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Abstract

We investigate the difference between cellular automaton based models and so-
cial forces model in the simulation of pedestrian dynamics. Recent findings with a
cellular automaton of the effect of communication on the evacuation behaviour of
pedestrians were reproduced. The overall trend of increasing evacuation efficiency
was confirmed. However, for a social forces model an increase in communication
leads to increased evacuation efficiency while in cellular automaton model this is not
always the case. A second point of comparison was lane formation in a corridor with
counter flowing stream of pedestrians. The social forces model reproduced this phe-
nomena but the order parameters employed in cellular automaton models are unable
to detect these lanes. Several order parameters were investigated but no satisfying
method of measurement was found.
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1 Introduction
The repeat occurrences of mass panics that lead to the death of many, such as the 1990
Mecca panic, which killed over 100 people, is a strong motivation for a robust under-
standing of crowd dynamics. As such simulations cannot be recreated experimentally, a
realistic model is necessary to investigate such effects. Numerous different models ex-
ist and understanding the limitations and realism of the different existing models is the
aim of this project. Specifically, the effect of communication on pedestrian evacuation
was investigated as well as lane formation in counter flowing streams of pedestrians in a
corridor.

The case for an investigation by physicists is twofold. On one hand, physics has been
concerned with particle motion since its inception and all the approaches that exist in
traditional physics have been successfully applied to pedestrian motion. Pedestrians have
been modelled with Newton equations or stochastically with Langerin and Fokker-Planck
equations as well as fluids. On the other hand, this problem seems to be well suited
to a reductionist, physicist approach. It is a complex system in which it is possible to
reproduce emergent phenomena with a few fundamental rules. Emergent means that the
observed phenomena are not build into the system but appear because of the complex
interaction.

Pedestrian dynamics is a complex system involving interactions between individuals.
These occur over a range of distances; a pedestrian will interact more strongly with an-
other pedestrian five meters away but on a collision course than another pedestrian half a
meter away in parallel motion. Through these interactions arise several self-organization
phenomena (such as lane formation) and only a few models exist that reproduce empir-
ically observed behaviour accurately. Strictly speaking the term ”pedestrian” refers to a
person and ”particle” is the representation of a person in a model. An ”agent” is a particle
in a model that acts autonomously e.g. communicates and makes decisions.

In the remainder of section 1 the empirical observations and approaches of simulating
pedestrian dynamics are described. In section 2 the model used in our simulation is de-
tailed and in sections 3 and 4 we present our results. In section 5 we present a scenario
we hope to use in the 2nd Semester and in section 6 we conclude with a summary and an
outlook on future work.

1.1 Empirical observations of Pedestrian Dynamics
For the motion of pedestrians, relatively little empirical data exists because of the diffi-
culty of analysing experimental data. A common method of data collection is by analysing
video footage. For the case of panics and evacuations almost no empirical data is available
due to the unexpected nature of such occurrences.

Pedestrians have a desired walking speed that depends on their purpose, external con-
ditions, sex (men are 10 % faster than woman) and age (older people walk slower) of the
walker. Weidmann [1] compiled average values of pedestrian velocity, shown in Table 1.
The velocities in crowds follows a Gaussian distribution with a mean of 1.34 m/s and a
standard deviation of 0.26 m/s. Pedestrians can accelerate and decelerate almost instantly
and have a typical step length of 0.65 m and step frequency of 2 Hz.

Crowds display a large range of collective phenomena, a short discussion of their be-
haviour under panic conditions will be given here based on the comprehensive treatment
in [2, 3, 4]. Crowd stampedes and panics often lead to fatalities. While sometimes the
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Sex v0i [m/s] Purpose v0i [m/s]
All 1.34 Leisure 1.10

Men 1.41 Shopping 1.16
Women 1.27 Commuting 1.49

Business 1.61

Table 1: Data from Weidmann [1] on the average speeds of pedestrians, broken down by
sex and by purpose of travel.

cause, such as a fire, is know at other times these appear without apparent disturbance.
Stampedes lead to a breakdown of normal pedestrian behaviour starting with pedestrians
trying to move at much higher speeds, pushing and coming into physical contact with
other pedestrians. This leads to jams, clogging and uncoordinated crowd movement. Ad-
ditionally people tend towards mass behaviour and alternative exits are often overlooked.
During panics, pedestrians often try to exit it through the entrance they used to enter the
building even if other exits are closer [5, 6]. This makes the effect of communication on
evacuation dynamics of great interest.

1.2 Modelling Approaches
Motion of pedestrians has been studied since the 1960’s . There are numerous methods of
modelling pedestrians including cellular automata, AI Models and social forces models.

1.2.1 Cellular Automata

In the Cellular Automata (CA) models, both time and space are discrete. The maximal
observed pedestrian density is around 6 P/m2 (where P stands for People). Therefore, a
pedestrian occupies around 40× 40 cm2 of space giving the cell size of this model. Each
cell can then be either full (with a person) or empty and the interaction with the nearest
neighbours determine the update rules. The particle in this model wishes to move in a
desired direction. If the cell in this direction is free, then the particle moves forward. If it
is occupied then it tries to move perpendicular to the direction of motion or diagonal. If
several particles try to move to a cell then one is picked randomly.

1.2.2 Floor Field Cellular Automaton

The Floor Field CA model is identical to general CA models with the addition of a floor
field. It was inspired by the pheromone trails used by ants to communicate whether they
found food on the path they took [2]. The purpose of the floor field is to transform long-
range interactions into local effects to enable easier computation. This is more efficient
in complex geometries as one does not have to check explicitly whether interactions are
blocked by walls.

Space and time are discreet just as in the CA model. However, there is a transition
amplitude to every neighbouring cell depending on the floor field that evolves with time.
This floor field combines the desired direction, interactions with walls, obstacles and other
pedestrians.

On short distances, pedestrian to pedestrian interaction is usually repulsive and im-
plemented by the rule that each cell can only be occupied by a single particle. Over long
distances, pedestrian to pedestrian interactions are often attractive i.e. it is advantageous
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to follow a crowd going in the same direction. This is represented as a local interaction
by the floor field. The effects of the infrastructure are shown by the static floor field that
is constant. The dynamic floor field is the traces left by pedestrians that influences the
motion of subsequent pedestrians and can decay with time.

The transition probability pij to each neighbouring cell j from the current cell i is
given by the contribution from the static (S) and dynamic (D) floor field and the preference
matrix P. The preference matrix P can be used to give pedestrians individual speeds and
walking directions. The transition probability is then given by

pij = N ekDDij ekSSij Pij (1− nij) Oij (1)

where kD and kS are the coupling constants to the floor fields and N is a normalization
factor that ensures the probability sums to one. The obstacle matrix Oij describes the
infrastructure and is zero for forbidden cells such as walls and one for allowed cells. The
factor (1− nij) is the occupation number of the neighbouring cell. For a particles current
position, nii = 0 to allow the particle to stay at the same position.

1.2.3 Social-Forces Model

The social forces model is a continuum model based on Newtons equation. As the name
implies, the psychological motivation of individuals to move towards their target and
avoid collisions are described by ”social forces”. The origin of these is of psychological
rather than physical nature but they are otherwise treated identically. Additionally there
are physical forces such as friction between objections and forces opposing compression.
This model, proposed by Helbing and Molnár [7] will be the focus of our work and is
described in detail in Section 2.1. It will henceforward be referred to as the Helbing
Model with no intention of diminishing the contribution of the co-authors.

1.2.4 Fluid Dynamic / Kinetic Models

As pedestrian dynamics have similarities with fluids, some of the earliest approaches
were based on kinetic theory, treating pedestrians as a gas. In these models the interac-
tions between the pedestrians are modelled as collision processes with the exchange of
momentum and energy. As we are not concerned with such models in this work this will
not be discussed in this report but Nishinari et al [2] and reference therein extensively
review these models.

1.3 Goal of the Project
Our initial goal was to reproduced several recent findings from simulations done with CA
models using the more complex Helbing Model. We aim to investigate the differences be-
tween simple CA models that aim only to capture the basic phenomenology to the Helbing
model that attempts a more detailed description of the underlying processes. We consid-
ered two scenarios of pedestrian motion: lane formation and the effect of communication
on evacuation.

My main focus has been the effect of communication in pedestrian evacuation based
on a paper by Smyrnakis and Galla [8]. In this context the agents use communication
to effectively choose one of several exits from a large area such as a bridge. For this
reason we refer to this as the bridge scenario. The results of our reproduction are detailed
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in section 3. My partner, Paul Vriend, focused on the phenomena of lane formation in
corridors. Nowak and Schadschneider [9] investigated this phenomena using a floor field
CA and serve as the point of comparison to the Helbing Model. The results from this
scenario, which we termed corridor scenario, are given in section 4.

2 Reproducing the Helbing Model

2.1 Description of the Model
We have adapted the model Helbing, Farkas and Vicsek proposed in their Nature paper
[5]. This model describes the natural tendencies of pedestrians to keep a distance from
other people and walls and the wish to reach a target using forces. Each pedestrian i of
mass mi wishes to move in a certain direction e0i with a desired velocity v0i and accord-
ingly accelerates to adjust the actual velocity vi in a characteristic time τi. At the same
time the pedestrian tries to keep a distance from other pedestrians j and walls W . This is
represented by the interaction forces fij and fiW . The equation of motion is given by

mi
dvi
dt

= mi
v0i (t)e

0
i (t)− vi(t)

τi
+
∑
j( 6=i)

fij +
∑
W

fiW (2)

with the change in position ri(t) given by the velocity vi(t) = dri/dt.
The avoidance of contact between pedestrians i and j is modelled by the forceAiexp[(rij−

dij)/Bi]nij where Ai and Bi are constants. The distance between the pedestrian’s centre
of mass is dij = |ri − rj| and the the normalized vector pointing from pedestrian j to i
is given by nij = (ri − rj)/dij . If the distance between them, dij , is smaller than the
sum rij = ri + rj of their individual radii ri and rj , the particles are in contact. In this
case two additional forces come into play: a ”body force” k(rij − dij)nij counteracting
compression and a frictional force between the pedestrians κ(rij − dij)∆vtijtij impeding
relative tangential motion. The tangential direction is given by tij = (−n2

ij, n
2
ij) and the

tangential velocity difference is ∆vtij = (vj − vi) · tij . In summary, we have

fij = {Aiexp[(rij − dij)/Bi] + kg(rij − dij)}nij + κg(rij − dij)∆vtijtij (3)

where the function g(x) is zero if the pedestrians do not touch each other and is oth-
erwise equal to its argument x.

The interaction with the walls is treated analogously. The distance to the wall W is
diW , niW denotes the direction perpendicular to the wall and tiW the direction tangential
to the wall. The wall force is then given by

fiW = {Aiexp[(ri − diW )/Bi] + kg(ri − diW )}niW + κg(ri − diW )(vi · tiW )tiW (4)

The constants were defined identical to those that Helbing et al used: a mass of 80 kg
and an acceleration time of τi = 0.5s. The constants Ai = 2 × 103N and Bi = 0.08m
are defined such that the models reproduce the distances kept by crowds under normal
desired velocities and fit the measured flows through bottlenecks. The parameters k =
1.2×105kgs−2 and κ = 2.4×105kgm−1s−1 determine the friction and anti-compressional
forces in case of contact. To avoid gridlock, some irregularity is introduced into the model
by uniformly distributing the radii ri of the pedestrians in the range [0.25m, 0.35m].
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The equations of motions are integrated numerically using the Euler method. Taking
an ordinary differential equation of the form dy/dt = f(t, y(t)) subject to the initial
condition y(t0) = y0. Let the step size be h which allows us to define time in terms of the
initial time t0 by tn = t0 + nh. One step of the Euler method from tn to tn+1 = tn + h is
given by

yn+1 = yn + hf(tn, yn) (5)

where yn is the value of the function at time tn, i.e. yn ≈ y(tn). The initial condition in our
simulations is the initial position of the pedestrians in the room. These are set by randomly
distributing the population of pedestrians over the available area while ensuring that no
overlap occurs. The time step h determines the accuracy of the numerical solution. This is
a trade off between computational speed and accuracy and we experimentally determined
a step size where a further reduction did not alter the behaviour of the simulation.

2.2 Verifying our Model
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Figure 1: Leaving time for 200 people from a square room of 15 × 15 meters and a 1
meter wide door. The equations of motion are numerically integrated using the Euler
method with a time-step h and averaged over 20 runs. The results for simulations with
times steps of h = 10−1 (green triangles), h = 10−2 (blue square) and h = 10−3 (red
circles) are shown. The results of Helbing et al is shown (black lines) [5].

Helbing et al calibrated their model against the experimental observation that 0.73 per-
sons per second pass through a 1m wide door when the desired velocity is v0i ≈ 0.8ms−1

[1]. When simulating this scenario we found a value of 0.8 ± 0.1 P/s. To ensure that
we reproduced the Helbing model we decided to reproduce the ”faster-is-slower” effect
Helbing et al observed when simulating escape from a room: when people wish to move
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faster through the exit, the increased pressure creates clogging that slows down the rate of
escape.

The escape time versus desired velocity from a room of 15× 15 meters and a 1 meter
wide door is show in Figure 1 1. While we reproduce the ”faster-is-slower” effect, it is
much less pronounced and our minimum leaving time is lower than that of Helbing et
al. There is a clear discrepancy between Helbing et al results and our result. There are
several possible reasons for this discrepancy. For the model to work a velocity cut off is
needed. Helbing et al describe this in their 2001 paper [10] but made no mention of it in
their 2000 paper [5]. The use of a different velocity cut-off could explain the differences
in our results. Another possibility is that the graph we used for comparison is a model that
includes injury of pedestrians when the force on them exceeds a certain pressure. These
injured people change the dynamics of the crowd making a direct comparison invalid.
The caption in their 2000 paper is not explicit. While we could not reproduce the exact
graph we have reproduced the ”faster-is-slower” effect and fit out data to the the observed
rate through an exit 1m wide. Therefore we concluded that out model was working and
proceeded to apply this to new scenarios.

2.3 Computational Optimization

Number of Threads Time for 1000 People [ms] Time for 2000 People [ms]
1 328 2367
2 229 1005
4 229 961

Table 2: Optimization of the program for multiple cores. Time taken to perform one
time-step. The average of 100 runs is taken using a Intel Q9550 Core 2 Quad.

Compared to a cellular automaton model, where the number of computations is of the
order of the sample size O(N), in the Helbing Model the computational time is of the
order of O(N2) as each pedestrian evaluates the force from every other pedestrian. The
first step in the project was to choose a programming language to write in, our two main
requirements being computational speed and the ease with which graphical output could
be generated. We choose Java as it aids the implementation of graphical output and has
a comparable speed to native languages such as C++. Java has the added benefit that the
code is transportable between Operating Systems without needing any adjustments.

To reduce calculation, a cut-off was introduced. If the distance to a person or a wall
is greater than 1.7m and hence the force from this object is less than 10−3N , the force is
not calculated as the effect is negligible compared to other forces acting on a pedestrian.

We investigated the speed of calculation compared to read and write to memory. As
the force fij on pedestrian i from pedestrian j is equal and opposite to the force on j, fji,
this can either be calculated twice or be written and read from memory. We found that
reading and writing to memory is around 10% slower than calculating the force twice.

Most calculations were done in the undergraduate computer cluster by letting comput-
ers run overnight or over weekends. For simulation with 1500 people, the runtime for a
single simulation is 5 hours. To collect a data set with 20 trials takes 80 hours, unfeasibly
long given the computational resources available to us. As part of the Bridge scenario

1Example videos of this and later simulations can be found on http://mphys.herobo.com
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(described in Section 3 I implemented the code for parallel computation, allowing it to
use more than one core to speed up computation. In Table 2 the run times per time step are
shown, using a Intel Q9550 Core 2 Quad. As this CPU has two cores, we expect a large
reduction in runtime when using two threads but only negligible reductions when using
more than two threads. The simulations for the bridge scenario took a total of ∼ 4000
hours.

3 The Bridge Scenario
This scenario is based on a paper by Smyrnakis and Galla [8] in which they investigate the
effects of communication and utility-based decision making on evacuation from a room.
Several approaches to decision making exist, such as neural networks [11]. These decision
making models typically consider information about the area that is being evacuated.
Smyrnakis and Galla considered the effect of direct communication between agents on
evacuation efficiency.

We replicated the set up and ran simulations with the Helbing Model to investigate
whether their results persist with the change of model. The code for this scenario as
well as running the simulations was my responsibility while my partner, Paul Vriend,
concentrated on the Corridor Scenario. However, throughout we consulted each other on
problems and the best approach to the implementation of the code.

3.1 Set Up
Smyrnakis and Galla use a CA model to propagate the particles. Their room has a large
central rectangular area 10m x 50m with exits on the shorter sides. On each side there are
two exits. The exits on one side have a width of 3.2 meters (L for ”larger”) while the exits
on the other side are of the width of 0.8 meters (S for ”smaller”). Once the particles leave
the central area they move up or down, depending which exit is closer. A schematic and
pictures from an evacuation are shown in Figure 2.

Agents in the main evacuation area use a utility function to assign a utility to each
exit and then move towards the exit with the highest utility. The default utility function
is based on the expected time to reach a certain exit, i.e. agents move to the closest
exit. Certain agents are given the possibility to communicate, meaning they can exchange
information about which exit they are heading towards and their velocity. This could
correspond to communication via a mobile phone. To this end they are randomly paired
up at the beginning of the simulation and after a set interval tI , 30 seconds, they start to
exchange information. Assume that agent α moves towards the exit S with velocity vαS
and its partner β moves towards exit L with velocity vβL. In this case the utility assigned
by agent α to the larger uαL and the smaller uαS exit are

uαS =
rαS
vαS

, uαL =
rαL
vβL

(6)

where rαS and rαL are the distance from agent α to the smaller and larger exit respec-
tively. The velocity represents the instantaneous motion towards the target and we use
the average motion over the last second of simulation. Communicating agents can revise
their decision after the interval tI has passed.

Smyrnakis and Galla observed that by increasing the fraction of people communicat-
ing (cN) the evacuation time decreased until 60% of agents communicate. Any further
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(a) (b)

(c) (d)

Figure 2: Schematic of the Bridge Scenario and 3 Screen shots from the simulation at
16.5, 35 and 70.2 seconds with a population of 1500 people with 50% of the population
being able to communicate. Pedestrians coloured blue do not have a partner and pedestri-
ans with a partner and therefore able to communicate are coloured red. These turn green
when they change their exit. (a) Schematic of the layout. (b) Simulation at 16.5 seconds,
all pedestrians are moving towards their closest exit. (c) Simulation at 35 seconds, agents
that are able to communicate. The majority of the agents that decided to change exits are
trapped in the crowd and cannot move anywhere as the agents behind prevent them from
moving (d) The larger exit has emptied and agents that are communicating with a partner
that left through the larger exit are trying to move towards it but continue to be blocked
by the crowd around them

increase in communication lead to a increase in evacuation time. Their original graph is
show in figure 3(a)

3.2 Reproducing Communication with the Helbing Model
An initial question in reproducing Smyrnakis and Galla communication was what part
of their model was due to the discreet nature of the CA and what was a description of
the underlying physics. Three distinct set of conditions were used for the simulations.
In the first we exactly followed the behaviour of the CA model described by Smyrnakis
and Galla. The agents initially move horizontally right or left until they leave the central
area and then move towards the closer exit (either up or down). The first modification of
this was for the agents to immediately move towards their nearest exit as diagonal motion
is possible in the continuous space Helbing model. Lastly, we additionally changed the
utility function. Instead of assuming that from the current position an agent could move to
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(a) Original Results (b) Exact Replica

(c) Four Exits (d) Adapted Utility

Figure 3: The effect of phone communication in the bridge scenario. The graphs show the
leaving time versus the fraction of the population communicating. The data is averaged
over 20 replications and the errorbars are the standard error of the sample. (a) The
results of Smyrnakis and Galla using a CA model [8]. (b) Exact replication of Smyrnakis
and Galla simulation using the Helbing model. (c) In this adaptation the default choice of
the pedestrians has been changed so that they move towards the nearest exit immediately
instead of moving left/right first. (d) Additionally to changing the default choice as in (c)
the utility function has been modified (see (7) ).

the alternative exit at its partners velocity, we introduced a utility function where the agent
assumes he can travel at his desired velocity to the other agents position, and from the
other agents position at its speed to the exit. Therefore, the utility uαS and uαL assigned
by agent α to the smaller and larger exit respectively is given by

uαS =
rαS
vαS

, uαL =
rβL
vβL

+
rαβ
v0α

(7)

where the agent β is the partner of agent α as before.
Smyrnakis and Galla used a population of 2100 people for their simulations. For the

simulations with the Helbing model, the largest population we used was 1500 people. This
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corresponds to approximately 85% of the surface of the room being covered by agents.
While the number of agents is smaller in our simulations than in those of Smyrnakis and
Galla, in our model the agents cover a larger surface area than 2100 people in the CA
model, where they cover 67%. Furthermore, the square nature of the cells in the CA
model mean it is possible to cover the entire surface area with agents while in the Helbing
model this is impossible. The maximal packing of circles in a plane is 90.7 %. As in our
simulations agents are placed randomly, this is unlikely to be achieved and therefore 85%
is close to the practical maximum.

The leaving times for these three set ups are shown in Figure 3 along with the original
results from Smyrnakis and Galla (Figure 3(a)). It is apparent that none of the simulations
with the Helbing Model reproduce the originally observed effect.

The exact replica of Smyrnakis and Galla simulation using the Helbing model (Figure
3(b))2 shows the same initial trend of reducing leaving time with increasing communica-
tion. However, in the Helbing model no minima occurs. The CA model predicts much
shorter evacuation times with no communication than the Helbing model, 113 seconds
for 2100 pedestrians compared to 370 seconds for 1500 pedestrians in the Helbing model.
This is due to the ability of the Helbing model to simulate arching and clogging at exits.
Two agents trying to enter an exit may block each other moving forward until the pressure
from the crowd behind them breaks the symmetry of forces such that one can advance.
This can lead to prolonged blockages of the exit unlike in the CA model where one agent
always is able to move to a free cell.

The larger the population is the more influence communication has. For a population
of 500 people around half will have left the structure by the time agents start communicat-
ing and the time to travel to the free, larger exit is almost equivalent to the time until the
smaller exits becomes free. For a population of 1000 people communication can slow as
well as speed up evacuation times, depending on the initial conditions, i.e. the placement
and the pairing of the communicating agents. On average it speed up the evacuation. For
1500 people communication always improves evacuation times.

When the default choice of the agents is changed so that they move towards the closest
exit immediately (Figure 3(c)) instead of moving horizontally left/right, the evacuation
time with no communication is reduced. At the same time, communication slows down
evacuation except for populations of 1500 people. The reason for this slow down is that
now, instead of switching between small exits and the larger exits, agents also switch
inbetween the larger/smaller exits. When an agents partner escapes through one of the
large exits, it is moving fast and the agent decides to switch exits, even if it is already
moving to the other large exit. However, as both large exits have an equivalent current
this does not lead to a faster exit but creates more gridlock as the agent tries to move
against the crowd to the other exit. For large population the benefit of agents switching
from one of the smaller exits to one of the larger ones is larger than the slow down created
by switches between exits of the same size.

We adapted the utility function that partners would not only exchange exit and velocity
but also the position at which they are. The motivation was that an agent crossing the
middle of the bridge could actually move uninhibited and the estimation that he would
move at his partners speed is an underestimate. Therefore, the new utility function we
introduced assumed travel to the partners position at the desired speed v0i of the agent i
and the from the partners position to the exit at the partners speed. As shown in figure
3(d), this leads to a steep decline in evacuation time than using Smyrnakis and Galla

2Example videos of this and later simulations can be found on http://mphys.herobo.com
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original utility function and a smaller dependence on the initial condition, as indicated by
the errorbars.

All simulations with the Helbing model show the same general trend, a reduction
of evacuation time with increasing communication. The lowest evacuation time occurs
when all pedestrians are communicating and this effect is most pronounced for larger
populations. However, this does not concur with the findings of Smyrnakis and Galla.
While the simulations with the CA model show an improvement in evacuation time with
increasing communication, the minima they observed is not reproduced with the Helbing
model. The overall larger evacuation time with the Helbing models is most likely due to
the more realistic occurrence of gridlock and congestion in this model.

Whether the longer leaving time due to congestion and jams at exits is realistic re-
quires experimental verification which is beyond the scope of this project. However, it
seems a valid assumption that there will be some degree of friction and jamming at an
exit with large crowds. The discrepancy in evacuation efficiency at high fractions of com-
municators does not have an apparent explanation. This is a point of further work in our
second semester. The general results of Smranski and Galla, that communication between
agents speeds up evacuation time, holds true with the Helbing model.

The effect of desired velocity has not been investigated to date, mainly because of a
lack of computing power. In the CA model the velocity is determined by what time is
associated with each step and hence is a scale factor. In the Helbing model, the desired
velocity has a large effect on the behaviour of the system, as is show by the faster-is-
slower effect observed in evacuation from a room (see section 2.2). This will be our
starting point in the second semester.

3.3 ”Text Messaging” Communication
We had two motivations for introducing an alternative form of communication. The draw-
back of the abstraction of the Smyrnakis and Galla model is that there is no one-to-one
translation to real evacuation situation. Groups and people that know each other generally
stay together and pedestrians display herding behaviour [10]. It is therefore unlikely for
a large fraction of pedestrians in a given evacuation to be able to communicate with a
partner in a different exit. Additionally, we were interested in a model that allows us to
influence the number of pedestrians going to each exit more directly.

To this end we introduced what we term the ”Text messaging” model. A fraction of
the population, randomly selected, is presented with the instructions that to go to one of
the two large exits. If the agent in question is already using this exit then this does not
change its motion. Likewise, if the agent has left through one of the exits already, it does
not revise its choice. We use the continuous-space version of the non-communicating
utility function i.e. the agents move towards the closest out of the four exits as our default
choice rather than moving horizontally right or left initially.

In reality pedestrians would have a certain propensity to follow an instruction from
e.g. a text message sent by a central system. However, as this just scales the overall
number of people following external advice we did not include a probabilistic propensity
in our model. This would introduce a further stochastic variable and the model already has
a stochastic element in it as the initial position of pedestrians is randomly assigned. This
introduces the constrain on our results at large percentages of ”texted” people will not be
reproducible in real live. The actual propensity to follow is an experimental constant to be
determined. In the meantime, this model allows the investigation of the effect of a central
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Figure 4: The effect of communication by a central authority in the bridge scenario.
The graphs show the leaving time versus the fraction of the population being directed
towards the larger exits. The data is averaged over 20 replication and the errorbars are
the standard deviation of the sample, the standard error being of the size of the data
points.

directing agent on evacuation flow.
The results are shown in Figure 4. It should be noted that the errorbars in this graph

indicate the standard deviation of the sample as the standard errors were of the size of data
points. As for the reproduction of the Smyrnakis and Galla model we restricted ourselves
to populations size of up to 1500 people. For large enough populations, directing the
agents always leads to an improvement in evacuation time. The slight rise in evacuation
time observed for a population of 500 people is caused by the slow-down due to counter
flowing pedestrians. The agents that receive the information to change exit turn around
and are blocked by the agents behind them. This keeps them trapped until the agents
behind have flown around them. By this point, the time it takes the pedestrians to travel
to the larger exit is larger than the time it would take them to escape through the smaller
exit, leading to an increase in evacuation time.

It is notable that for the fraction communicating cN ≥ 0.6 the evacuation time is
around 150 seconds independent of the population size. This stems from the inefficient
default choice of a quarter of the population going through each exit even though the
larger exits have a fourfold larger capacity than the smaller ones. To a certain extent it
is not surprising that distributing pedestrians among exits according to the exits capacity
leads to an improvement over an equal allocation of pedestrians to each. However, this is
in accordance with observed evacuation behaviour where pedestrians tend to us the door
they used to enter the structure to exit, even if closer exits are available.

This method of communication shows the largest decrease in evacuation time, 50%
for a population of 1500 people. As for the ”phone” communication scenario proposed
by Smyranski and Galla, the effect of desired velocity remains to be investigated.
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4 The Corridor Scenario
We implemented this scenario because it is a natural test of computer simulations as well
as a further comparison between CA models and the Helbing model. A recent paper using
a floor field CA by Schadschneider and Nowak [9] has served as a point of comparison,
allowing us to continue the investigation of the differences between CA models and the
Helbing Model. My partner Paul Vriend wrote the code and collected the data for this
scenario. However, we consulted each other continuously on our projects and solved any
problem that appeared together.

Spontaneous segregation is observed in several physical systems such as colloidal
suspensions [12] or granular materials [13] . From everyday experience it is best know
through pedestrian counterflow where pedestrians have different walking directions. This
has been observed experimentally (e.g. [14]) and is a common qualitative test of computer
simulations. However, there are few quantitative descriptions of lane formation. A focus
of the study of bidirectional flow is the transition to gridlock, where no movement is
possible. These appear in models but have not been observed experimentally. A lower
density limit for this transition to occur has be given as 3.5P/m2 by Zhang et al [15].
In our simulation we do not have pedestrian densities over 3P/m2 and therefore any
occurrence of gridlock is unrealistic. However, as pedestrians can ”squeeze” past each
other, which the spherical particles in our model cannot, the occurrence of gridlock is to
be expected in our model.

4.1 Set Up
Our initial approach was to create a corridor of a set length and inject particles at either
end. When these particles reached the opposing end of the corridor they were removed.
This lead to a large number of problems, such as instability, as the injection of particles
disturbed the flow. As a result we implemented periodic boundary conditions, i.e. a par-
ticle that leaves the corridor at one end, enters at the other. At the beginning of each
simulation we randomly distributed the pedestrians over the available area. This resolved
all problems and made it possible to have a clearly defined density of pedestrians. Pedes-
trians of type A (coloured blue) wish to move towards the right while pedestrians of type
B (coloured red) move towards the left.

4.2 Definition of Different States
The patters observed in a corridor with counter flowing streams of pedestrians can be
characterised by four states, illustrated in figure 5. For low particle densities where the
average distances between particles is too large for any interaction to occur, the system is
said to be in free flow. As the density increases a state of disorder occurs where particles
interact but not enough for any emergent phenomena to appear. Lane formation occurs at
equivalent and higher densities where particles are in close contact. Eventually, gridlock
develops, the jamming of the complete system such that no movement in the desired
direction is possible.
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Figure 5: Illustration of the four phases of pedestrian motion in a corridor. From the top
to bottom free flow, disorder, lane formation and gridlock are shown. Blue particles wish
to move towards the right while red particles move towards the left.

4.3 Order Parameters
As lane formation is often used to validate a model we found it surprising that there are
few attempts that go beyond the observation that lanes are present in a system. Our first
aim was to find a systematic way to classify lane formation. The difficulty becomes
apparent when one investigates a picture, such as the bottom corridor in figure 5, as
lane formation is a dynamic phenomena. One possible parameter has been introduced
by Schadschneider and Nowak [9]. This order parameter together with the density can
distinguish between the four states of free flow, disorder, lanes and gridlock in the CA
model. However, we found that this was not adequate for the Helbing model: situations
which we visually judged to contain a large number of lanes had lower order parameters
than those we judge to be in disorder.

This stems largely from the difference between the CA model and the Helbing model.
While in the CA models, particles move in straight lines unless blocked , in the Hel-
bing model, motion generally is of diagonal nature due to the many forces acting on the
pedestrians. As a result, the definition of an order parameter is more complex. As Schad-
schneider et al used the order parameter for the classification of the states of the system,
our starting point was to find an order parameter that works with continues space models.

4.3.1 Schadschneider and Nowak Order Parameter

Based on a paper by Nowak and Schadschneider [9] this order parameter is inspired by
a parameter used to detect lanes in colloidal suspensions. This parameters counts the
number of pedestrians with the same NA and opposite NB direction in the lane for each
pedestrian. As Schadschneider and Nowak use a floor field CA, they only consider the
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row the particle is in. More generally one includes particles whos lateral distance, i.e. the
distance perpendicular to the direction of the motion, is below a certain threshold x0 (we
took x0 to be 1.5 times the radius). For each particle n the order parameter φn is given by

φn =

(
NA
in −N

B
in

NA
in +NB

in

)2

(8)

where in is the row of particle n and NA
i (NB

i ) denotes the number of type A (B) at
row i. The order parameter for the complete system is then give by the means

Φ =
1

N

N∑
n=1

φn (9)

where N is the total population. The value of Φ is in general larger than zero even if
all particles are distributed at random. The mean value of Φ with a random distribution
is denoted by Φ0 and for small densities Φ0 can be large even though there is not lane
structure in the system. This is taken into account by defining a reduced order parameter
Φ̃

Φ̃ =
Φ− Φ0

1− Φ0

(10)

which can be less than zero. We introduced a horizon for this parameter to account for
lane formation being local. A horizon of 10 particle lengths was introduced to account
for the more dynamic nature of the simulations with the Helbing model.

4.3.2 Nearest Neighbour Order Parameter

The nearest neighbour order parameter (NN OP) was motivated by the idea that the dy-
namics can be described by the local environment. For this parameter, for each pedestrian
we find the nearest neighbour. If it is travelling in the same direction, then we add one
to the overall order parameter, if it is moving in the opposite direction, we subtract one.
The overall order parameter is divided by the population N and is in the range [-1,1]. For
convenience we scaled it such that it lies in the range [0, 1] where zero indicates per-
fect mixing and 1 indicates that all pedestrians are moving in the same direction as their
nearest neighbour.

4.3.3 Correlation Order Parameter

The correlation order parameter (C-OP) correlates the direction of motion of the particle
with the direction of motion of its nearest particle. Only particles within twice the aver-
age inter-particle distance are considered as for large distances no interactions can occur
between them. The average inter-particle distance is the distance between particles if they
are evenly distributed in the available area.

If the direction of motion of a particle is within 45◦ of that of its nearest neighbour, we
added one to the overall order parameter. After this has been done for the whole popula-
tion N, the overall order parameter is divided by N, giving a value in the range [0,1] where
large values correspond to larger correlation between the velocity of the pedestrians.
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4.3.4 H-index Order Parameter

The h-index was proposed by Hirsch as a tool for determining both the productivity and
impact of the published work of theoretical physicists. It is defined as [16]:

A scientist has an index h if h of his Np papers have at least h citations each,
and the other (Np − h) papers have no more than h citations each.

Adapting this definition to pedestrian motion, we consider each particle and count the
number of particles within its horizon that are moving in the same direction and subtract
the number of particles that are moving in the opposite direction. The horizon is defined
analogous to the horizon for the Schadschneider parameter. The h index for the entire
system then is the number of particles that have an h-index of h or greater.

4.4 Comparison of Order Parameters
The value of the order parameters is plotted against the pedestrian density in the corridor
in figure 6. We observed the lane formation generally occurs in the density region 0.35 <
ρlane < 1.5 P/m2. A parameter that would indicate lane formation consistently would
have a range of values in this region, depending whether the specific simulation exhibits
lane formation, allowing us to distinguish between disorder and lane formation.

Neither the Schadschneider nor the Schadschneider reduced order parameter allows
lanes to be distinguished. This is because most lanes observed with the Helbing model
have a diagonal component and hence do not contribute to the Schadschneider order pa-
rameter which measures lanes only along the horizontal axis. The h-index initially reflects
the increasing density and at high density reflects how tightly the pedestrians are clustered.
However, it does not show the presence of lanes.

The nearest neighbour (NN) and the correlated order parameter are independent of
density and show fluctuations over the region of interest. Upon closer examination of
simulations, the correlated order parameter was found not to correspond to lane forma-
tion while the NN order parameter did correspond partial. Here partial means that for
certain simulation runs, the NN order parameter did indeed correspond to the degree of
lane formation observed. However, in a significant fraction of the simulations the order
parameter did not correspond to the degree of lane formation. As we judged the degree of
lane formation on a subjective scale, these observations are not presented in detail here.
We felt that none of the order parameters correlated closely enough with the observed
degree of lane formation to warrant a more systematic investigation.

We concluded that there is not simple method apparent to use that can quantify the
degree of lane formation in the Helbing model. In the light of this observation it is not
surprising that there have been few attempts at quantifying the lane formation in experi-
mental data or computer simulation.

5 The T-Junction Scenario
This scenario is based on a paper of Galla [17]: people encounter a junction with two,
asymmetric exits. The effect of a dynamical sign on the total current is investigated.
There are the results from a simulation with a cellular automaton model as well as analytic
solutions. We have implemented this scenario, a screen shot is shown in Figure 7 (with
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(a) (b)

(c) (d)

Figure 6: The five order parameters investigated against pedestrian density in corridor.
(a) Schadschneider and Schadschneider Reduced Order Parameter (b) h-index Order Pa-
rameter (c) Nearest Neighbour Order Parameter (d) Correlated Order Parameter

symmetric exits), but did not have the time to systematically investigate it. In the 2nd
Semester we hope to use it as it allows a good comparison of cellular automaton and
social forces model against the base line of the analytic solution.

6 Summary and Outlook
We have investigated the differences between reductionist CA models and the more de-
tailed approach of the Helbing model. In the case of evacuations from a large structure
(the ”Bridge” scenario) we have confirmed the observation that communication improves
evacuation times for large pedestrian densities. However, the observation that there is
a minima of evacuation time at 60% of the population communicating has not been re-
produced. The evacuation times in the Helbing model are larger than in the CA model
but this is expected as the size of the agents is larger in the Helbing model and the Hel-
bing model can produce gridlock and clogging at exits. A new form of communication
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Figure 7: Layout of T-Junction scenario. The arrows indicate the direction of motion.
When the pedestrians are created, they have a randomly determined target at the wall
of the T-Junction. Pedestrians that have targets on the left are coloured red while those
with targets on the right are coloured blue. When they move into the junction, they move
left/right depending which exit is closer.

was introduced by us, where we showed that a directing agent allows for a more efficient
evacuation.

The measurements for the Bridge scenario have been performed at a pedestrian desired
velocity of 1.2m/s. Our further work will focus on investigating these effects at different
velocities.

In the ”corridor” scenario we have tried to find a parameter that allows us to quantify
the degree of lane formation in a system. The adaptation of the order parameter from the
spatially discreet CA model failed to identify lane formation as well as the other order
parameters we created. It remains an open question what an effective measure of lane
formation is in a spatially continuous system.

We implemented a T-Junction as previous work have both solved this scenario analyt-
ically as well as investigated with simulations with a CA model. In the second semester
this would be a promising point for evaluating the difference between the Helbing and
CA model that we discovered against the baseline of the analytic solution.

19



References
[1] Weidmann, U. Schrieftenreihe der IVT 60 March (1993).

[2] Schadschneider, A., Chowdhury, D., and Nishinari, K. Stochastic Transport in com-
plex systems: from molecules to vehicles. Elsevier, (2011).

[3] Schreckenberg, M. and Sharam, S. D., editors. Pedestrian and Evacuation Dynam-
ics. Springer, (1998).

[4] Helbing, D. Rev. Mod. Phys. 73(1067) (2001).

[5] D.Helbing, Farkas, I., and Vicsek, T. Nature 407, 487 (2000).

[6] Elliott, D. and Smith, D. Ind. Environ. Crisis. Q 7(3), 205 (1993).

[7] Helbing, D. and Molnár, P. Phys. Rev. E 51(5), 4281 May (1995).

[8] Smyrnakis, M. and Galla, T. Submitted to Eur. Phys. J. B, arXiv:1204.2508, (2012).

[9] Schadschneider, A. and Nowak, S. Phys. Rev. E (2012).

[10] Helbing, D., Farkas, I., and Vicsek, T. Environ.Plann. B 28, 361 (2001).

[11] Aik, L. Int. J. Phys. Sci. 6(13), 3218 (2011).

[12] Rex, M. and Lwen, H. Phys. Rev. E 75(051402) (2007).

[13] Mullin, T. Science 295, 1851 March (2002).
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