
This illustrates the diffusivity governing the capsules swelling are similar for both cases
and the analysis developed by Sherwood et al can be used to describe ovalbumin-alginate
capsules.

After reaching a new equilibrium, the capsules undergoes renewed inflation until it
eventually ruptures after 70 hours. The reason for this secondary phenomena is unknown.
It could be related to the rearrangements of the cross-linked bonds in the membrane.
Currently this is an open question.

Determining the area dilation modulus of capsules is done by placing capsules at
varying salt concentrations and leaving them until they have reached a new equilibrium
radius. Examples for stiff and pliable batch of capsules are shown in Figure 3.

(a) (b)

Figure 3: Equilibrium radius of capsules of two batches relative to the radius at 13.5
g/l salt concentration. Note that this method fails to rank these capsules correctly. a)
Stiff capsules (made with 0.0045 molar alkaline) b) Malleable capsules (made with 0.001
molar alkaline).

As can be seen from the comparison, while the method predicts the correct order of
magnitude it misjudges the relative elasticity of the two capsule batches. This is caused
by a strong dependence on the initial radius r0 in equation 5 (K ∝ r−5

0 ), limiting the
practicality of this method.

The inaccuracy of the method mean that this is insufficient to characterise capsules.
Considering our interest in the strong deformation of capsules, the use of linear elasticity
is an additional constraint.

3.2 Compression
The compression of a capsule between parrallel plates will be explored in this section. The
general process used for experiments and the subsequent matching with the theoretical
model follows the process employed by Carin et al [14].

First, for a given capsule the experiment was carried out, recording the force exerted
on the capsule as well as the deformation. This information, along with a best guess for
the area shear modulus Gs, is given to the computer program. It then finds the value for
Gs for which experimental parameters are matched. This returns a value of Gs for every
value supplied to the program.

To determine the correct constitutive law and confirm the functioning of the method,
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we assume that the material coefficients should be constant during the whole compression
process. This restricts the constitutive laws under consideration to the simplest nonlinear
cases. If an appropriate constitutive law has been selected, the value of Gs should be
constant throughout compression.

A semi-analytic treatment of the compression of capsules between parallel plates is
used, as derived by Feng and Yang [12] and generalized to any constitutive law by Lardner
and Pujara [13].

3.2.1 Experimental Implementation

A Instron 3345 Single Column Testing System is used with a 100 N load cell to record
the force on and the displacement of the top plate compressing the capsule. The set-up
consist of a saline bath through which the top plate is lowered onto an anvil. A schematic
is shown in Figure 4 a) next to a typical experimental output.

(a) Schematic (b) Typical Output

Figure 4: a)Schematic of the set-up used for the compression. A slender perspex plate is
used to compress a capsule in a saline bath. The bath is made out of perspex, allowing
pictures of the compression to be take using a still camera. The Instron records the force
and the displacement of the top plate. b) A typical example of the force exerted during
compression. The top plate is lowered at 0.01 mm/s. The green datat points indicate the
force measured and the blue the force after subtracting the buoyancy force exerted on the
top plate. The red line is smoothed and used for comparison to the images taken.

Initially, the force exerted on the top plate due to buoyancy forces is measured as it is
lowered through the saline bath without a capsule present. This is then subtracted from
subsequent force measurements. The top plate is lowered at a rate of 0.01 mm/s, such that
the complete compression takes approximately 5 minutes. This has been chosen so that it
is slow enough for the compression to be quasi-static with respect to membrane deforma-
tion while at the same time be instantaneous compared to osmotic changes that take place
on the time-scale of hours. During the compression, images are taken of the capsule every
2- 3 seconds to match the shape to the compression. The images are calibrated with a ball
bearing 4 mm in diameter at the beginning of the experiment. An example of a capsule
being compressed is shown in Figure 5.
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Figure 5: Example of compression of a capsule of diameter 3.7 mm and a membrane
thickness that is 10 % of radius, shown at 4 points during the compression. The capsule
has been coloured red and time progresses from left to right. Note that the capsule returns
to its original shape after the compression.

In 2 out of the 39 compression test carried out the shape of the capsule after compres-
sion was measurably different. Upon placing these capsules in saline for 24 hours they
regained their previous shape. This semi-permanent deformation is most likely is due to
liquid being squeezed out of the capsule in the latest stage of the compression. How-
ever, the presence of plastic deformations cannot be excluded in those two cases. Only
data from experiments in which the capsule immediately return to its previous shape have
been used for further processing.

The uncertainty in force is of the order of 1 mN , as estimated from the precision of
the force measurement. On the images, one pixel corresponds to 7 µm. However, due
to difficulties to locate the exact boundary, the error on distance measurements is larger,
especially at large compression due to the reduced amount of light in the image. The error
on the size of the contact area is always less than 0.1mm. This is used to determine the
pressure from the force measurement as well as the degree of compression.

The uncertainty on the force measurement is substantially, given that the burst force of
the capsules is between 40 and 120 mN. A more accurate force measurement is desirable
and in future experiments, 5 N load cell will be used instead of the current 100 N cell.

3.2.2 Equations of Equilibrium

There are three key assumptions in the derivation that follows that of Feng and Yang [12]
.

1. The profile of both the deformed and undeformed configuration are axis-symmetric

2. The elastic membrane is composed of incompressible homogeneous isotropic ma-
terial with constant thickness before deformation.

3. The magnitude of the thickness of the membrane before deformation, h, is small
compared to the other dimensions meaning that bending resistance is negligible.

For the undeformed configuration, the spherical coordinates (r, θ, ψ) are used and for
the deformed configuration the cylindrical coordinates (ρ, θ, η). This is illustrated in Fig.
6. The governing equations are separately applied to the region in contact with the plate
and the free surface. A prim ′ indicates differentiation with respect to ψ.

The principal stretches λ1 and λ2 in the meridian and circumferential directions indi-
cate the degree to which the membrane is stretched at a given point. A value> 1 indicates
stretching while< 1 means compression of the membrane. The relation between the prin-
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Figure 6: Coordinate System

cipal stretches and the coordinates is given by

λ1 =
dS

ds
=

1

r0

(ρ′2 + η′2)1/2

λ2 =
ρ

r0 sinψ

The equilibrium equations for membranes of revolution in the meridian tangential and
normal directions are, from eqn (13) in Feng and Yang [12]:

dT1

dρ
+

1

ρ
(T1 − T2) =

Pt(r)

cosθ
(6)

K1T1 +K2T2 = Pn(r) (7)

where Pn and Pt are the external loads acting on the deformed surface in the normal and
tangential direction and T1 and T2 are the stress resultants. The relation between the stress
resultants and the principal stretch ratios comes from the constitutive relation.

We assume that Pt(r) = 0 as force is only exerted by the top plate that is stationary
with respect to the capsule. Pn(r) = P , where P is related to the volume of the deformed
membrane. Thus we can rewrite these equation as(

∂T1

∂λ1

∂λ1

∂ψ
+
∂T1

∂λ2

∂λ2

∂ψ

)
∂ψ

∂ρ
+

1

ρ
(T1 − T2) = 0 (8)

K1T1 +K2T2 = P (9)

where K1 and K2 are the principal curvatures in the deformed configuration.
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Contact Region In the contact region we have that η′ = 0 and hence the principal
stretch ratios reduce to

λ1 =
ρ′

r0

(10)

λ2 =
ρ

r0 sin(ψ)
(11)

Differentiating the expression for λ2 with respect ot ψ we find that

λ′2 =
λ1 − λ2 cos(ψ)

sin(ψ)
(12)

Turning our attention to equations 8 and 9, we see that the second equation, for normal
pressure, is automatically satisfied as K1 = K2 = 0. For convenience, the relations
between the tension and the stretch, which are determined by the constitutive law, are
written in terms of functions f1, f2 and f3

f1 =
∂T1

∂λ1

; f2 =
∂T1

∂λ2

; f3 = T1 − T2 (13)

Assuming that Pt(r) = 0 we can rearrange the first equation:

λ′1 = −λ′2
f2

f1

+
ρ′

ρ

f3

f1

λ′1 = −λ1 − λ2 cosψ

sinψ

f2

f1

+
λ1

λ2 sinψ

f3

f1

Non-Contact Region In the non-contact region, it is convenient to write the equations
of λ2 in terms of δ = λ2 sin(ψ). The rate of change of δ with respect to ψ is assigned the
symbol ω = δ′. We rearrange the first equation 8 to leave only λ′1 on the left hand side:

λ′1 = −λ′2
(
f2

f1

)
+
ρ′

ρ

(
f3

f1

)
λ′1 = −ω sinψ − δ cosψ

sin2ψ

(
f2

f1

)
+
ω

δ

(
f3

f1

)

Now let us consider the equation 9. The principle curvatures are

k1 =
dθ

dS
; k2 =

sinθ

ρ
(14)

where the angle θ is the angle measured from the positive axis of symmetry to the outward
normal of the deformed membrane surface and can be related to the deformed surface by

cos θ =
dρ

dS
; sin θ = − dη

dS
(15)

We can now express the curvatures in terms of deformed and undeformed coordinates

k1 =
ρ′η′′ − η′ρ′′

(dρ2 + dη2)3/2
; k2 =

−η′

ρ(dρ2 + dη2)1/2
(16)
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Using the relations for the principle stretches (10) (11), we can write the principal curva-
tures K1 and K2 in terms of these

K1 =
1

r0

√
λ2

1 − δ′2

(
λ′1ω

λ2
1

− ω′

λ1

)
(17)

K2 =
1

r0λ1δ

√
λ2

1 − ω2 (18)

we can rewrite eqn 9 as

1

r0

√
λ2

1 − ω2

(
λ′1ω

λ2
1

− ω′

λ1

)
T1 +

1

r0λ1δ

√
λ2

1 − ω2 T2 = P(
ω′

λ1

− λ′1ω

λ2
1

)
T1 =

(λ2
1 − ω2) T2

λ1δ
−
√
λ2

1 − ω2 P r0

ω′ =
λ′1ω

λ1

+
(λ2

1 − ω2)

δ

T2

T1

− λ1 (λ2
1 − ω2)

1
2 P r0

T1

(19)

In summary, for the contact region we have

∂λ1

∂ψ
=

λ1

λ2sinψ

(
f3

f1

)
−
(
λ1 − λ2cosψ

sinψ

)(
f2

f1

)
(20)

∂λ2

∂ψ
=
λ1 − λ2cosψ

sinψ
(21)

In the non-contact region, it is convenient to write the equations of λ2 in terms of
δ = λ2 sin(ψ). The rate of change of δ with respect to ψ is assigned the symbol ω.

∂λ1

∂ψ
= −

(
δcosψ − ωsinψ

sin2ψ

)(
f2

f1

)
+
(ω
δ

)(f3

f1

)
(22)

∂δ

∂ψ
= ω (23)

∂ω

∂ψ
=
λ

′
1ω

λ1

+
λ2

1 − ω2

δ

T2

T1

− λ1 (λ2
1 − ω2)

1/2
Pr0

T1

(24)

The constitutive law determines the functions f1 − f3, specifically

f1 =
∂T1

∂λ1

; f2 =
∂T1

∂λ2

; f3 = T1 − T2 (25)

There are 5 boundary conditions. At the pole, where ψ = 0, λ1 = λ2 due to the rotational
symmetry of the problem. At the border between the contact and non-contact region
(ψ = Γ), λ1 and λ2 must be continuous as well as δ′ = λ1 from equation 21. Finally, at
the equator (ψ = π/2) ω must be zero.

ψ = 0 : λ1 = λ2 = λ0 (26)

ψ = Γ : η
′
= 0 or δ

′
= λ1 (27)

ψ = Γ : (λ1)contact = (λ1)non−contact (28)
ψ = Γ : (λ2)contact = (λ2)non−contact (29)

ψ =
π

2
: δ

′
= 0 (30)
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Figure 7: Sketch of the compression of a capsule between parallel plates. Only one
quadrant is considered in the numerical scheme.

These boundary conditions are indicated in Fig. 7.
The volume of the inflated membrane after contact can be found

V = 2πr3
0

∫ π
2

Γ

(
λ2

1 − δ
′2
)1/2

δ2 dψ (31)

and hence the pressure P after contact, where the initial pressure P0 depends on the
constitutive law. Here T is the tension when λ1 = λ2 = λ and λs is the pre-inflation,
specifying that the radius of the capsule increased from r to λs r.

P =
2P0λ

3
s

3
∫ π

2

Γ
(λ2

1 − ω2)
1
2 δ2dψ

where P0 =
2 T (Gs, λs)

λs r0

(32)

3.2.3 Constitutive Equation

To determine the functions f1 - f3 a constitutive law for the material properties is needed.
We will consider three constitutive law, all assuming a two dimensional membrane. The
equation for T1 is given. The form of T2 can be found by interchanging the indices 1 and
2.

Neo-Hookian Model
The Neo-Hookian model assumes the membrane is a incompressible, thin isotropic mate-
rial. This constitutive law is strain softening:

T1 =
Gs

λ1λ2

(
λ2

1 −
1

(λ1λ2)2

)
(33)

where Gs is the surface shear elastic modulus.
Skalak law

The Skalak law was original developed by Skalak et al [46] to descrieb the almost area-
incompressible membrane of red blood cells and is strain-hardening:

T1 = Gs

(
λ1

λ2

(λ2
1 − 1) + Cλ1λ2((λ1λ2)2 − 1)

)
(34)

The first term describes the effect of shear deformation with a surface shear elastic modu-
lusGs. The second term accounts for area dilation with a modulus of C Gs. In its original
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formulation for red blood cells the constant C was large to make for a material that is
easily sheared and almost area-incompressible. However, the law is general and can be
applied to membranes that are area compressible by lowering the value of C.

Evans and Skalak Law
Proposed by Evans and Skalak [47] to model biological membranes.

T1 = Gs

(
λ2

1 − λ2
2

2λ2
1λ

2
2

+ A(λ1λ2 − 1)

)
(35)

The shear deformation is characterised by the first term with a modulus Gs. The second
term accounts for area dilation with a modulus A Gs. For membranes that are almost
area-incompressible the parameter A is large.

3.2.4 Numerical Implementation

Feng and Yang implemented a shooting method for the solution of these equations. After
duplicating this implementation in Python and finding it sensitive to the initial conditions
and liable not to converge, this approach was abandoned.

Instead, the problem was implemented using a first order finite difference method in
MATLAB with the help of Draga Pihler-Puzovic.

To confirm the correctness of the model, the case of an inflated sphere with no com-
pression was studied. In this case, the principal stretches should be constant and equal
to the pre-inflation λs. For small numbers of gird points N = 50, the principal stretches
deviate up to 1.5 % from the expected value. As the number of grid points is increased,
the error is reduced proportional to h = 2π/N , the grid spacing. For N = 1600, the
deviation of from λs is less than 0.07 %. This is illustrated in Figure 8.

We draw the conclusion that for N = 200 we can expect the error in the principal
stretches to be below 1 %. To test the validity of the full model, the case of minor com-
pression was used. Results reported in the literature indicate that as the compression
increases, the stretches gradually depart from being constant throughout the membrane.
They are reduced in the region in contact with the plate, which leads to the formation of a
dimple in the absence of preinflation. The stretches in the non-contact region increase.

However, the results with the current code do not produce this expected results. Given
the possible existence of multiple solutions, several approches were taken. Different stat-
ing guesses were supplied. However, the modification always lead to the convergence to
the original solution, as shown in Figure 9 a). An alternative solution was finally found by
modifying the solution such that the principle stretches are equal to the preinflation but ω
is left unchanged.

Current work is focused on finding all solutions to the equations. Additionally, here
are two possible sources of error. One one hand, the governing equations used could be
wrong, given the disagreement in the literature over the exact form. A summary of the
reported equations is given in the Appendix. On the other hand, an error in the implemen-
tation could be the cause.

As the output of interest is not the principal stretches but the shear modulus Gs, the
question of its sensitivity to the grid size warrants future investigation. This investigation
will be repeated once the full model has been validated. Additionally to the grid size,
the effect of the constitutive law was investigated by comparing the Neo-Hookian and the
Skalak model with C = 0.

The resulting shear modulus for two cases case ((Γ, P ) = (43◦, 224) and (73◦, 1410))
at three different preinflations (λs = 1.05, 1.1, 1.2) are shown in Figure 10. It is apparent
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(a) N=50 (b) N=400

(c) N=1600 (d) Error vs Grid Spacing

Figure 8: The principal stretch ratios in the meridian λ1 and circumferential λ2 direction
for the case of no compression (i.e. Γ = 0) and a preinflation of 30 % (λs = 1.3) with
a Neo-Hookian law. The graphs show the results for varying numbers of grid points N
a) N=50 b) N=400 c) N=1600 d) Maximal error versus the grid spacing h (= 1/N ).
The error decreases proportional to the grid spacing as expected when using a first order
method.
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(a) (b)

Figure 9: The principal stretch ratios in the meridian λ1 and circumferential λ2 direction
for the case of small compression (i.e. Γ = 0.01) and a preinflation of 20 % (λs = 1.2)
with a Neo-Hookian law. Inserts show transition between contact and non-contact region
at 0.6◦. a) Typical Result b) Alternative solution when strech ratios are set equal to the
preinflation but ω is left unchanged. Note the difference in scale of the y-axis.

(a) Γ = 43◦ (b) Γ = 73◦

Figure 10: Effect of grid size, preinflation and constitutive law on the value of the area
shear modulus Gs. The red symbols are calculated with the Neo-Hookian law and blue
symbols with the Skalak law. Circles correspond to λs = 1.2, triangles to λs = 1.1 and
squares to λs = 1.05. For N ≥ 100 the grid size does not affect the shear modulus. a) At
moderate compression with Γ = 43◦. b) At large compression with Γ = 73◦ .
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Figure 11: Resulting surface shear modulus for a capsule being compressed with different
constitutive laws. The capsule membrane appears to be strain-hardening. However, no
conclusions can be draw until the code has been fully validated.

that the value of Gs is independent of grid size for N ≥ 100. It also can be seen that the
effect of the constitutive law, while not unimportant, is outweighed by the effect of a 5 %
change in preinflation.

An example of results is given in Figure 11 based on the compression of a capsule
made with 0.002 molar NaOH. It can be seen that this method allows for a clear distinc-
tion of different constitutive laws, given compression data. The large deviation at low
compression is due to variations in the pressure determined from experiments.

3.3 Compression in a Pipette
We have found that the compression between rigid plates offers the best measurement
technique that can be implemented without extensive simulations. However, the depen-
dence on sophisticated compression equipment and relative difficulty of carrying out ac-
curate measurements means there is room for improvement.

We have been inspired by the work of Wyss et al [20] who determined the linear elastic
response of gel beads pressed into the conical tip of a pipette under a know pressure, see
Figure 12 for an illustration. A limitation is the restriction to small deformation as our
capsule routinely undergo extensions of 100 % or more in the flow.

3.3.1 Wyss et al Pipette Method

A short outline of the formalism will be given here, the full argument can be found in
Wyss et al paper. In equilibrium, the stress applied to the capsule must be balanced by the
elastic forces. We take the central axis of the capillary to be the z-direction of a cylindrical
coordinate system.

The stresses in the longitudinal direction of the capillary must be equal to the applied
pressure difference σz = p. In the absence of static friction, the longitudinal component
of the wall force must exactly balance the applied pressure difference. Given that the
wall of the capillary makes an angle α with the z-axis the force acting on the surface
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